

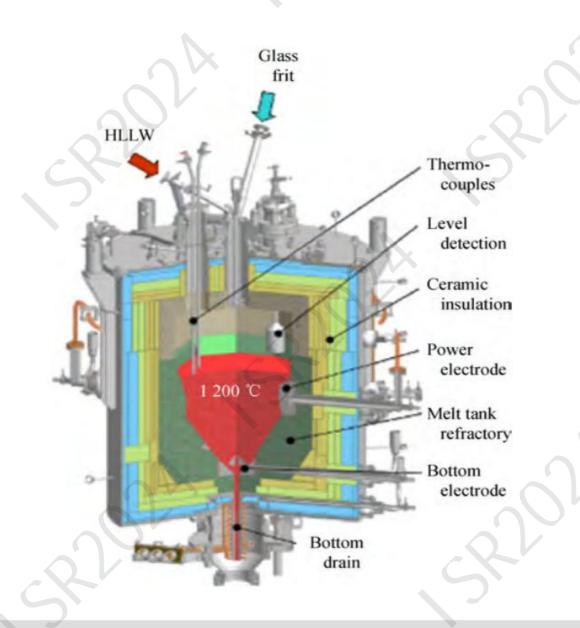
Research on Structure and Properties of the Fused Cast AZCS Refractory

Limin Mao

Ruitai Materials Technology Co., Ltd., China Building Materials Academy

Contents

- ♦1. Introduction
- **♦2. Experimental Procedures**
- ♦3. Results and Discussion
- ♦4. Summary



1. Introduction

- ◆ At present, high level liquid waste (HLW) vitrification is the only mature technology that achieves engineering applications in the treatment of high-level radioactive waste.
- The key equipment of vitrification is the Joule heated ceramic melter/furnace.
- ◆ This work investigates the structure and properties of fused cast aluminum-zirconium-chromium-silicon (AZCS) refractory for the Joule heated ceramic furnace.

Schematic of the Joule heated ceramic furnace

2. Experimental Procedures

- ☐ The chemical analyses of the samples were performed by X-ray fluorescence spectrometer in accordance with the requirements of GB/T 21114-2019.
- □ The apparent porosity and bulk densities of samples were measured by kerosene absorption as indicated in GB/T 2997-2015.
- □ Determinations of exudation of glass phase of samples were conducted according to appendix B of JC/T 493-2015.
- □ According to the JC/T 805-2013 and JC/T 639-2013 testing standards, the initial exudation temperature of glass phase and the bubble rate of samples are measured respectively;
- □ According to the GB/T 5072-2023 and GB/T 7320-2018 standards, the cold crushing strength and linear expansion rate of the test sample are measured separately.
- □ According to JC/T 806-2013, the static corrosion resistance tests were performed at 1500 °C for 36 h, using test specimens with a size of 10 mm × 10 mm × 70 mm.

Table 1 Chemical analysis of the test glass

Composition	SiO ₂	B_2O_3	Na ₂ O	Li ₂ O	K_2O	Al ₂ O ₃	CaO	MgO	BaO
ordinary soda lime glass	72.2		14.3	1	0.3	1.5	7.8	3.9	1
borosilicate glass	44.89	12.26	11.06	2.18	1	5.11	6.72	4.37	3.51

The static corrosion resistance test

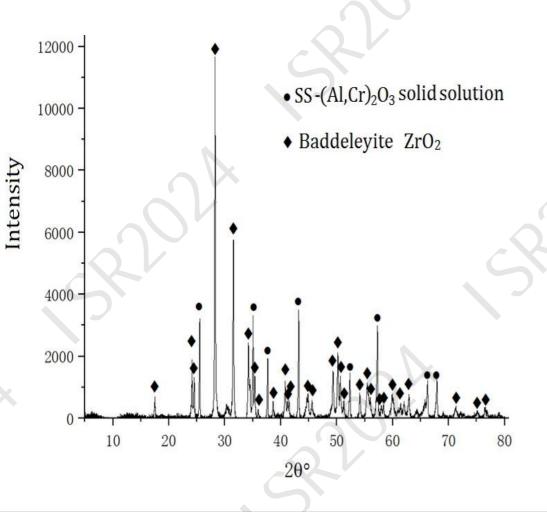
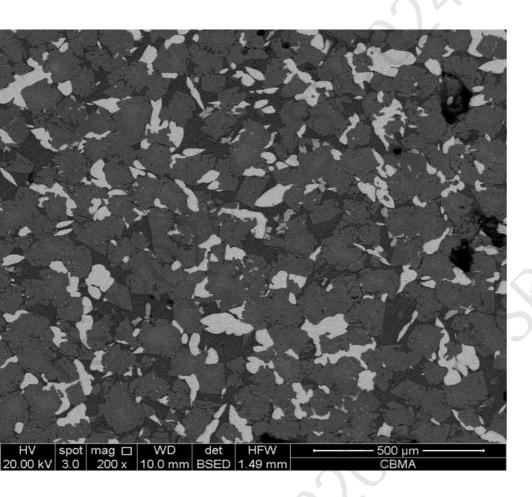

3. Results and Discussion

Table 2 Physical and chemical properties of the AZCS samples

	Material properties	index
J-660 GA 104	SiO ₂	12.31
	Al_2O_3	29.70
Chemical-	ZrO_2	25.32
composition	Cr_2O_3	31.22
/w %	Na_2O	0.80
Phycholl	M gO	0.26
	others	0.39
	Bulk density /(g·cm ⁻³)	3.80~4.01
	Apparent porosity /%	$3.0 \sim 5.0$
	Cold crushing strength /M Pa	398
	Rate of static corrosion resistance to ordinary soda-lime glass /mm·d ⁻¹ (1500 °C×36 h)	0.31
	Rate of static corrosion resistance to borosilicate glass /mm·d ⁻¹ (1500 °C×36 h)	0.35
	Exadation of Glass Phase /% (1500 °C×4 h)	1.46
	Initial exudation temperature of glass phase /°C	1460
	Bubble rate /% (ordinary soda-lime glass, 1300 °C×10 h)	0.80
	Linear expansion rate /% (400~1300 °C)	0.71

Fig. 1 XRD pattern of the fused-cast AZCS material


Typical phase composition of AZCS $\square Al_2O_3$ - Cr_2O_3 solid solution 50-53%,

- □Monoclinic ZrO₂ 26-29%
- □glass phase 16-18%.

there is no corundum or Al₂O₃-ZrO₂ eutectoid, nor is there any free Cr₂O₃

Fig. 2 Micro-morphology of the fused cast AZCS

- □Due to its rich (Al, Cr) ₂O₃ with good chemical stability and the secondary crystal phase is ZrO₂ baddeleyite
- □AZCS have high erosion resistance to glass.

Table 3 Comparison of main performance of fused cast refractory

Refractory	Fused-cast AZCS	Fused-cast AZS33	Fused-cast AZS 41
Main chemical composition / w % Al ₂ O ₃ SiO ₂ Cr ₂ O ₃	24~28 27~33 11~15 24~28	32~35 47~51 ≤16 /	40~44 45~46 ≤13 /
Rate of static corrosion resistance to ordinary soda-lime glass /mm·d ⁻¹	0.31	1.60*	1.30*
Initial exudation temperature of glass phase /C	1460	1400*	1400*
Bubble rate /% (ordinary soda-lime glass, 1300 °C×10 h)	0.80	2.0*	1.0*
Exudation of Glass Phase /% (1500 °C ×4 h)		2.0*	3.0*

^{*} Quoted from JC/T 493-2015

- ☐ The corrosion resistance of fused-cast AZCS material is at least 4-5 times higher than that of fused-cast AZS material.
- □ According to Vogel Fulcher Tammann (VFT) law, the Al³+ and Cr³+ ions in the glass phase of AZCS have both positive influence on the high-temperature viscosity (log η).
- ☐ Therefore, compared with fused-cast AZS materials, the AZCS materials have higher initial exudation temperature of glass phase, lower exudation of glass phase and bubble rate.

4. Summary

□AZCS material has a unique microstructure and properties including the excellent erosion resistance, making it has broad application prospects in glass fiber furnaces, colored glass melting furnaces, etc.

□It can be used in areas where severe corrosion occurs in glass furnaces, such as doghouse corners, bubbler zone, weirs, and throats. It can also be used as a patch tile for glass tank to extend the service life of sidewall.

Thanks!

瑞泰科技 RUITAI TECHNOLOGY

北京市朝阳区五里桥一街1号院27号楼,100024 Bldg 27,Compound 1,Wuliqiao 1st street, Chaoyang District, Beijing,P.R China.100024